Implementation and Demonstration of Energy Management Systems for Terminal Buildings

Tianmeng Shen,

Nishi Laboratory
Graduate school of Science and Technology
Keio University, Japan
Overview

- **Introduction**
 - Smart Grid in Japanese island
 - EV & ITS project and FUSION project

- **The meta-standard concept**
 - The concept for integrating heterogeneous systems

- **The construction of the EMS**
 - Constructing an EMS in an actual operating building

- **Application of the constructed EMS**
 - Air-conditioner control application
Introduction

- **Smart Grid in Japanese island**
 - Power grid is independent from that of main land.
 - Effective use of distributed power sources and leveling of electric power of demand and supply are important.
 - To achieve these matters, Energy Management Systems and its upper layer applications for the leveling are necessary.

- **Nagasaki EV&ITS project**
 - Research about utilizing ITS technologies in island
 - Install over 100 electric vehicles (EV) to the Goto island, Nagasaki prefecture
 - Construction of Energy Management Systems (EMSs) in the Terminal Buildings
Purpose

- **Purposes of this study**
 - The construction of the EMS in the Fukue Port Terminal Building of Goto island
 - The construction of total system including hetero-subsystems using XML, which maintains interoperability
 - The demonstration of the proposed XML format for data description in the actual operating building
 - The reduction of CO$_2$ emission by controlling air-conditioner as application of EMS

This study aspires to formulate unified XML-based format for data description (system interface) to maintain interoperability and to develop upper layer application.
The meta-standard concept

Conventional system construction

- The total system has heterogeneity composed of various standard technologies and protocols
- Selection of standard technologies from each layer is fundamentals of system architecture

![Diagram showing system levels and standards](image)
The meta-standard concept

In the conventional system construction

- We need to select and combine appropriate standard technologies according to communication requirements and data semantics in order to construct the total system and upper layer application.

Example of the conventional EMS construction

- Existing upper layer application should consider these constraints of these standard technologies, and dedicated application software is indispensable to utilize each technologies.
The meta-standard concept

- The meta-standard concept for the system construction
 - Considering infrastructures and standard technologies as resources for operating and managing the system

A common platform and flexible protocol for data description are necessary.
The common platform for meta-standard

- The common platform with database for
 - flexible operation and management of the resources
 - treating the existing infrastructures and standard technologies in different areas as available resources

- All the interfaces (data description) is defined and unified by proposed XML-based format
The XML-based data description

- All the interfaces (data description) are defined by using XML-based message format to exchange data through the RS-PF, AP-PF, and PF-PF interfaces.
- The sample data description through the RS-PF interface

```xml
<?xml version="1.0"?>
<inms>
  <head>
    <version>1.0</version>
    <id name="device">12345abc</id>
    <timestamp timezone="JST">2011-02-24 23:13:56</timestamp>
  </head>
  <body>
    <group name="A01">
      <timestamp timezone="JST">2011-02-24 21:45:43</timestamp>
      <in name="temperature" type="room" id="ABC" action="write">Data</in>
      <in name="humidity" type="room" id="DEF" action="write">Data</in>
    </group>
  </body>
</inms>
```
The construction of the EMS

- **Site**
 - Fukue Port Terminal Building, Goto island, Nagasaki Prefecture, Japan
 - Floor area : 2330[m2] Robby area : 1180[m2]

- **Purpose**
 - To confirm the feasibility of the proposed XML-based common platform and data description

- **System configuration (The constructed system includes various heterogeneous subsystems.)**
 - Subsystems of environmental sensors
 - EV’s plug-in stands measurement system
 - Subsystems of EV’s information (indoor condition, running history with GPS)
 - Photovoltaic generation system
 - Power measurement system
 - Each subsystem is constructed by different 7 companies.

- **Upper layer application and service (The EMS application)**
 - Data visualization on the web
 - Air-conditioner control
 - Human behavior management using RFID tag
Installed devices

- Bringing devices produced by different companies into the actually operating environment, Fukue Terminal Building.

- Control device
- Power measurement device
- Photovoltaic generator
- Environmental sensors
- Server

Fukue port Terminal Building
Measurement items of the system

- Various information should be included to demonstrate data description format and common platform. Measurement items are as follows.
 - Consumed power of receiving point, air-conditioner, and distribution board
 - Photovoltaic generated power
 - Environmental data (Temperature, Humidity, Motion, Air velocity, Illuminance)
 - Information of fast charger of EV (EV’s plug-in station)
 - Driving history of EV

- We have 2,000,000 sampling data for 1 day storing in the common platform (database).

- These information are described by using proposed XML-based format.

- In this presentation, consumed power and environment data are mainly shown.
Upper layer application and service

- Examples of possible upper layer application of the EMS
 - Air-conditioner control using head-count conjecture
 - Air-conditioner control considering indoor environment
 - Demand control using EV’s battery pool
 - ITS application for EV and tourism
 - Data visualization on the web

- These applications uses information from the resources such as
 - Motion sensor, RFID reader, environmental sensor, power measurement sensor, GPS, EV’s plug-in stand, etc.

 These information can be accessed as desired on the common platform.

- Though this study is mainly focused on air-conditioner control and data visualization, the total system should be prepared for future expansion.
 - The common communication platform
 - Proposed XML-based format for data description
Constitution of the EMS

Fukue Port Terminal Building, Nagasaki, Japan
- Sensors
 - Temperature
 - Humidity
 - CO₂
- RFID Reader
- Specified Low Power Radio
- Air-Conditioning Control
- Resource Management Server

Fukue Island, Nagasaki, Japan
- Solar Panels
- EV Plug-in Station

Keio University, Yokohama, Japan
- Resource Management Server

Infrastructure
- LAN (100BASE-TX)
- L2SW
- L3SW
- AP
- WiFi
- 3G
- RS485
- XML-C
- Data

Networking
- IP-VPN

Communication
- About 1000 km

Confirmation of system operation

- Tendency of consuming energy is conjectured to have correlation with ship departure.
- Control of electrical devices, especially air-conditioner can be conducted using scheduling method.
Demand side application

- General outline of the demand side application implemented in the site

Common Platform (PF)

- Database
- Environmental data
- Resource state data
- Consumed power data

Control

- XML
- Data Acquisition

Response (Required data)

- XML
- Command

Application (AP)

- Static AC control
- Dynamic AC control
- Receiving power leveling with battery

Resource (RS)

- Air-conditioning equipment
- Battery
- Sensor

AC : Air-conditioning equipment
Control targets of the application

- In this research, AC control is conducted as an application of the constructed EMS.
- Control targets of the application
 - 12 electrical air-conditioning equipment
AC control method

- **Static AC control**
 - The operation schedule of the AC is prepared based on configured reduction rate.

 Ex) Operation schedule for an AC(control target) with configured reduction rate (CRR) 10%

 ![Operation Schedule](image)

 - **Dynamic AC control**
 - The control schedule varies according to the reduced CO₂ emission.
 - Turn off which AC and how long would be different according to the situation.

 Ex) Reduced CO₂ of an AC(control target) and operation decision

 ![Operation Schedule](image)

 \[
 \text{Actual reduced CO}_2 \text{ rate (ARR) = Reduced / (CO}_2 \text{ emission + Reduced)}
 \]

 ![Operation Schedule](image)

 Compare ARR and target rate (TR)

 Environmental situation

 - which AC?
 - how long?
Dynamic AC control flow chart

- Start
 - Get HVAC On/off state
 - Calculate PMV of each room
 - Turn off HVAC based on PMV and cut rate
 - Calculate RP
 - HVAC state
 - Environmental data
 - Consumed power of HVAC
 - HVAC : Air-conditioning equipment
 - RP : Reduced power
 - TRP : Target reducing power
 - End of experiment?
 - Decision: TRP <= RP
 - Decide control parameters

The common platform
- Resources data
 - XML
 - AC
 - Sensors

Keio Univ. West Lab
CO₂ saving experiment during winter

- Experiment term: January 13th, 17th, 19th, 21st of 2011
 - The experiment was conducted as operation confirming and preliminary survey.
 - We set the day with AC control and without AC control alternately.
- CO₂ saving method
 - Static AC control: Turning off the AC based on predefined constant operation schedule

- Evaluation of the experiment
 - Reduced CO₂ emission calculated from reduced consumed power of the AC
 - CO₂ – Electric power coefficient: 0.375[t- CO₂/1000kWh]
 - PMV (environmental index) change during AC control
 - Questionnaire to evaluate deterioration of environmental condition because of AC control
 - Participators: 22 workers of the building
 - Participators answer comfort level they felt
 - Comfort level is valued 0 as normal
 - The questionnaire was took place during July.

Discomfort because of cold Discomfort because of hot
-2 -1 0 1 2
Temperature dropped about 1°C in maximum.

The control influences indoor condition.

We conducted questionnaire to estimate environmental effect.
Experimental result

<table>
<thead>
<tr>
<th>Date</th>
<th>2011/1/13</th>
<th>2011/1/17</th>
<th>2011/1/19</th>
<th>2011/1/21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside temperature[℃]</td>
<td>3.4</td>
<td>3.7</td>
<td>4.9</td>
<td>5.8</td>
</tr>
<tr>
<td>AC CO₂ emission sum[kg]</td>
<td>38.86</td>
<td>38.36</td>
<td>31.24</td>
<td>30.00</td>
</tr>
<tr>
<td>Reduced sum[kg]</td>
<td>9.11</td>
<td>20.99</td>
<td>26.40</td>
<td>36.44</td>
</tr>
<tr>
<td>Result of questionnaire※</td>
<td>-0.41</td>
<td>-0.52</td>
<td>-0.19</td>
<td>-0.19</td>
</tr>
<tr>
<td>PMV※</td>
<td>-0.48</td>
<td>-0.44</td>
<td>-0.43</td>
<td>-0.29</td>
</tr>
<tr>
<td>CRR[%]</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>ARR[%]</td>
<td>6.61</td>
<td>16.03</td>
<td>8.37</td>
<td>10.84</td>
</tr>
</tbody>
</table>

※Average value of no-control day is **-0.37**, PMV is **-0.41**

- System can see reduction of the CO₂ emission about 13% at most.
- Result of questionnaire value shows close inclination between control and no-control day.
- The influence to the environment by air-conditioner control doesn’t be felt so much by demand side.
- More reduction of CO₂ emission can be anticipated by raising configured cut rate.
CO₂ saving experiment during summer

- **Experiment term**: Weekday of the July and August, 2011 (2 months)
 - We set the day with AC control and without AC control alternately.

- **CO₂ saving method**
 - Static AC control: Turning off the AC based on predefined constant operation schedule
 - Dynamic AC control: Turning off the AC on the fly based on target value of reducing CO₂ emission

- **Evaluation of the experiment**
 - Reduced CO₂ emission calculated from reduced consumed power of the AC
 - CO₂ – Electric power coefficient: 0.375[t- CO₂/1000kWh]
 - Questionnaire to evaluate deterioration of environmental condition because of AC control
 - Participators: 22 workers of the building
 - Participators answer comfort level they felt
 - Comfort level is valued 0 as normal
 - The questionnaire was taken place during July.
Experimental result

<table>
<thead>
<tr>
<th></th>
<th>AC Control method</th>
<th>Static / Dynamic CRR / TR[%]</th>
<th>Days</th>
<th>AC CO₂ emission sum[kg]</th>
<th>AC CO₂ emission per day[kg]</th>
<th>Reduced sum[kg]</th>
<th>ARR[%]</th>
<th>Average outdoor temperature [℃]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul.</td>
<td>Static</td>
<td>5</td>
<td>5</td>
<td>294.98</td>
<td>59.00</td>
<td>14.53</td>
<td>4.70</td>
<td>30.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>4</td>
<td>204.71</td>
<td>51.18</td>
<td>20.42</td>
<td>9.07</td>
<td>29.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>5</td>
<td>235.62</td>
<td>47.12</td>
<td>59.47</td>
<td>20.15</td>
<td>31.00</td>
</tr>
<tr>
<td></td>
<td>With control sum</td>
<td>14</td>
<td>735.31</td>
<td>52.52</td>
<td>94.43</td>
<td>11.38</td>
<td></td>
<td>30.45</td>
</tr>
<tr>
<td></td>
<td>Without control sum</td>
<td>17</td>
<td>874.06</td>
<td>51.42</td>
<td>0.00</td>
<td>0.00</td>
<td>29.94</td>
<td></td>
</tr>
<tr>
<td>Aug.</td>
<td>Dynamic</td>
<td>5</td>
<td>4</td>
<td>236.46</td>
<td>59.11</td>
<td>16.66</td>
<td>6.58</td>
<td>31.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>5</td>
<td>283.77</td>
<td>56.75</td>
<td>46.38</td>
<td>14.05</td>
<td>31.20</td>
</tr>
<tr>
<td></td>
<td>With control sum</td>
<td>9</td>
<td>520.23</td>
<td>57.80</td>
<td>63.03</td>
<td>10.81</td>
<td></td>
<td>31.48</td>
</tr>
<tr>
<td></td>
<td>Without control sum</td>
<td>22</td>
<td>1321.09</td>
<td>60.05</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>30.50</td>
</tr>
</tbody>
</table>

- The dynamic AC control can reduce the CO₂ emission more effective.
- The CO₂ emission saving can be anticipated in both control method.
Questionnaire result

Questionnaire result of July, 2011 (static AC control experiment).
✓ Most answered comfort level was “0” means comfort as usual.
✓ The result also shows close inclination between with control and without control day.
✓ It can be said that the control of AC doesn’t always cause environmental deterioration at the demand side.

<table>
<thead>
<tr>
<th>Comfort level</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>-1</th>
<th>-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRR : 5%</td>
<td>2.00</td>
<td>8.80</td>
<td>8.80</td>
<td>1.20</td>
<td>0.2</td>
</tr>
<tr>
<td>CRR : 10%</td>
<td>1.75</td>
<td>6.75</td>
<td>11.75</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>CRR : 15%</td>
<td>3.20</td>
<td>8.00</td>
<td>10.00</td>
<td>0.20</td>
<td>0</td>
</tr>
<tr>
<td>Without control</td>
<td>1.71</td>
<td>6.86</td>
<td>10.71</td>
<td>0.64</td>
<td>0</td>
</tr>
<tr>
<td>Sum of people</td>
<td>57</td>
<td>207</td>
<td>291</td>
<td>16</td>
<td>1</td>
</tr>
</tbody>
</table>

Answered number of people per day

- Most answered comfort level was “0” means comfort as usual.
- The result also shows close inclination between with control and without control day.
- It can be said that the control of AC doesn’t always cause environmental deterioration at the demand side.
I know you could do it. 3% of energy is reduced.
I know you could do it. 3% of energy is reduced.
I know you could do it. 3% of energy is reduced.
Conclusion

- System including heterogeneous subsystems is constructed by using the common platform and unified XML-based format.
- The AC control application was developed as application of the constructed EMS.
- The result showed the system (application) can reduce 13% of CO₂ emission in the winter and 20% in the summer at most.

Future work

- Continue operation of constructed system to show availability of the formulated connection data.
- Study control algorithm considering comfort of demand side by utilizing result of this study.
Thank you for listening.